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Contemporary time series models constitute a rich research toolbox that has been
put to extensive use in various disciplines including financial econometrics and analysis.
Arguing for the effectiveness of technical analysis, many financial specialists resort to
using conventional time series models as a medium to predict the future movements of the
prices of stocks and other financial derivatives. This paper examines the suitability of
ARMA and ARCH/GARCH models for this purpose using the monthly price data of the
stocks of Royal Dutch Shell Company. The paper further employs in-sample simulations
as a way to measure the goodness of fit of the specified models. The research shows that
for the case of Royal Dutch Shell the GARCH (1,1) model possesses considerable
forecasting capacity yielding correct predictions for the 73,33% of values under
consideration. The results substantiate the argument that predictions via time series
models can provide valuable insights for the agents in international financial markets to
develop more informed and reasonable line of actions.
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Today methods of time series analysis are extensively used by
researchers in both social and natural sciences. In financial econometrics, tools
of time series analysis are being widely employed to discover historical patterns
of various financial variables which later on are exploited for forecasting
purposes. In the scope of this paper, we will examine the applicability of basic
time series models for analyzing the behavior of stock prices, which will be
followed by in-sample predictions as a way of evaluating their goodness of fit.

Conventional time series models like ARMA, ARCH and GARCH allow to
analyze the stock price behavior based on the historical data of stock’s past
values without incorporating other independent variables. However, building on
the ARMA specifications, the author also extends the model to incorporate
additional independent variables that can be significant in determining the price
movements of the stock under consideration. For the purposes of the analysis,
the author has chosen to use the monthly data of the adjusted closing prices of
Royal Dutch Shell Company, which is a British-Dutch multinational oil and
gas27company headquartered in the Netherlands and incorporated in the United
Kingdom.

There is a huge stock of literature discussing the usage
of time series models for analyzing stock price movements and making financial
predictions. With the continuous development of financial markets and
institutions as well as financial instruments, we witness increasing number of
research papers that apply time series techniques for financial market analysis.

According to Gili Yen and Cheng-Few Lee (Review of Pacific Basin Financial
Markets and Policies, vol 11, issue 2, 2008), two main schools of thought for
analyzing the behavior of financial instruments exist - technical analysis and
fundamental analysis. Fundamental analysis attempts to determine a stock’s value
by focusing on underlying factors that affect a company’s actual business and its
future prospects, while technical analysis looks at the price movement of a stock
and uses this data to predict its future price movements.!

Time series were mainly studied under a deterministic prism, until Yule
introduced the notion of stochasticity in 1927. According to him, every time-
series approach can be regarded as the realization of a stochastic process. This
simple idea launched a number of time-series methods, varying in parameter
estimation, identification, model checking and forecasting?. The notion was
followed by the “Time Series Analysis: Forecasting and Control” by G.E.P. Box,
G.M. Jenkins, that integrated the existing knowledge and laid the foundation for
many contemporary methods of times series analysis, including the different
extensions of ARMA model. These Box-Jenkins approaches present a coherent
and versatile instrument for time series identification, estimation and diagnostic
checking.

' Yen G., Lee Ch., Efficient Market Hypothesis (EMH): Past, Present and Future, Review of Pacific
Basin Financial Markets and Policies, Vol. 11, issue 2, 2008, pp. 305-329.

2 Christodoulos C., Michalakelis C., Varoutas D., Forecasting with Limited Data: Combining
ARIMA and Diffusion Models, Journal of Technological Forecasting & Social Change, Vol. 77, 2010,
pp. 558-565.
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According to the Efficient-market hypothesis (EMH) proposed by Fama,
Eugene (Financial Analysts Journal (1965), pp. 55-59) stocks always trade at their
fair value as the markets react instantaneously to all news. Researchers have
relaxed this hypothesis by introducing the “semi-strong” version of the argument
stating that stock prices reflect all publicly available information and that prices
instantly change to reflect new public information. The latter provides grounds
for arguing that the basic time series models like ARMA, ARCH and GARCH
models are capable of effectively formulating the stock price behavior based on
the historical data of stock prices and without incorporating other independent
variables. Nevertheless, in this paper, the author will go beyond this basic model
and will try to examine the suitability of including select independent variables
for producing more robust outcomes.

In recent years, we also witness an increase in the usage of non-
conventional methods for analyzing stock price movements. In particular, Tsai
and Wang ( Stock price forecasting by hybrid machine learning techniques,
2009) did a research where they tried to predict stock prices by using ensemble
learning composed of decision trees and artificial neural networks. In addition,
Min and Lee made analysis and predictions using machine learning. They
evaluated methods based on SVM, multiple discriminant analysis, logistic
regression analysis, and three-layer fully connected back-propagation neural
networks concluding that vector machines outperform other approaches for this
kind of analysis.

As already presented in the preceding sections of
this paper, we will be basing our analysis on the historical data from the Dutch
company Royal Dutch Shell. The company is one of the six oil and gas
"supermajors” and the sixth-largest company in the world measured by 2016
revenues (and the largest based in Europe). Hence, in the framework of the
ARIMAX model, we will also examine the possible relationship between the stock
price movements and the dynamics of S&P500 index and the prices for West
Texas Intermediate Futures.

The S&P500 Index is a capitalization-weighted index of the stocks of 500
U.S. based companies. The index is widely used to measure the performance of
the global economy through changes in the aggregate market value of 500
stocks representing all major industries. We have also incorporated a variable for
the prices of the West Texas Intermediate Futures as we assume that for a
multinational oil and gas company like Royal Dutch Shell the situation in the oil
market has an instrumental effect in the variation of stock prices. Both the stock
index and the indicator for oil prices were selected based on the level of
correlation with the stock prices under consideration (the variables with the
highest correlation are used, however models with the other indicators have also
been constructed and are presented in the following section).

In this paper, we have used the monthly data of the aforementioned
indicators ranging from 01/01/2010 to 04/01/2018. Hence, overall, we have 100
observations that have been obtained from the Yahoo Finance platform. The data
is chosen to be monthly because of the nature of these indices - they change very
quickly and the investor is always interested for its quick results. It is worth
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noting that the adjusted closing prices of the stocks will be discussed in the
frames of the model. In this paper, we have used the following time series
analysis methods-ARIMA/ARIMAX, ARCH/GARCH/T-GARCH, ECM etc.

To begin with, ARIMA models are widely regarded as the most general class
of models for forecasting a time series which can be made to be “stationary”.
ARIMA models are often referred to as Box-Jenkins models. The general transfer
function model employed by the ARIMA procedure was discussed by Box and
Tiao (1975). ARIMA (Auto Regressive Integrated Moving Average) model is a
generalization of an autoregressive moving average (ARMA) model. An ARMA
model expresses the conditional mean of y, as a function of both past
observations y;_;,...,y_, and past innovations, &_;, ... &_4 . The number of
past observations that y, depends on, p, is the AR degree. The number of past
innovations that y,depends on, is the MA degree. In the next section of the
paper, a step-by-step approach has been employed to present the model building
process. We have used different tests to identify the correct number of lags to be
incorporated in the model. The models have then been compared to identify the
most robust version using the Akaike Information Criteria as the main criteria
(the reported log likelihood coefficients can be used as well).

Afterwards, the models of ARCH/GARCH family have been used to
formulate the behavior of stock prices. ARCH models are commonly employed in
modeling financial time seriesthat exhibit time-varying volatility and volatility
clustering, i.e. periods of swings interspersed with periods of relative calm. Like
most financial time series, the simple line plot of adjusted closing prices of Royal
Dutch Shell stocks show considerable volatility, thereby we will also examine the
suitability of this model for the purposes of this analysis.

As a final step, the identified models will be used to conduct in-sample
predictions to reveal how robust these models are and whether they can be used
to make reliable predictions for future market movements. All the statistical
evaluations have been done using the STATA software package.

We begin our analysis by testing for stationarity in
the select variables. Below attached is a graph presenting the movement of
adjusted closed prices of Royal Dutch Shell stocks. It is apparent from visual
inspection, that the stock prices do not constitute a 1(0) stationary process. We
have employed a more formal Augmented Dickey Fuller test to establish our
initial evaluation. Following the generally accepted methodology, we will
difference the variable to get a stationary variable. The stationarity of the
differenced variable has been proved by both the formal ADF test, and can be
inspected visually from the below graph.


https://en.wikipedia.org/wiki/Mathematical_finance
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Volatility_(finance)
https://en.wikipedia.org/wiki/Volatility_clustering
https://en.wikipedia.org/wiki/Volatility_clustering
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A time plot of the RDS stock price and the twice differentiated version
of the variable

The same procedure was employed to stationarize the variables for S&P500
index and the monthly prices for West Texas Intermediate Futures. After these
initial diagnostic and corrective steps that were undertaken to avoid using
outputs of spurious regression for the purposes of our analysis, STATA software
package has been used to produce the correlogram and partial correlogram for
the sock variable.
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The correlogram and partial correlogram of the differenced
stock variable

The respective graphs show that for the MA part of the model we shall use
the first lag. However, the partial correlogram is comparatively ambiguous,
thereby we have run the ARMA model with different lag specifications for the AR
process. After quietly running the regression for the models, we have employed
the Akaike Information criteria to identify the most robust model. The model with
the lowest AIC coefficient or the biggest log likelihood coefficient turns out to be
ARMA (1,1) model. To exhaust all the possible versions of suitable ARMA models,
we have constructed MA(1) AR(1), AR(2) and AR(3) models for the variable under
discussion. Using the same criterion, it has been identified that AR(3) is most fit



to explain the behavior of stock prices (refer to the table below). It is worth
noting that the AR (3) model has a higher coefficient of log likelihood than the
ARMA(1,1) model.

Moving forward, we firstly try to incorporate the time series of FTSE1000
index as an independent explanatory variable. According to the results of the
regression, the link between the FTSE1000 stock index and the RDS stocks is
quite weak. The variable seems to be statistically not significant with a P-value of
around 0,197. Moving forward, we decided to resort to the S&P500 stock index
as an indicator of the conjecture of financial markets that may have significant
relationship with the stock variable. Based on the regression results, the variable
is significant with 90% confidence interval. Overall, the log likelihood of this
ARMAX model is equal to -246.05 which is quite close to what we have calculated
for the ARMA (1,1) model.

Augmenting the frames of our research, we have also conducted regression
using the monthly prices for West Texas Intermediate Futures as an independent
variable. The independent variable is significant with 95% confidence interval,
however we can see that the log likelihood of the model has comparatively
decreased (please refer to the summary table below).

As outlined in the previous sections of this paper, we will also use models
from ARCH/GARCH family. The time plot of the stock variable presented at the
beginning of this section provides grounds to believe that we have considerable
volatility and these models may prove to be quiet robust. Having already
established that the variable is stationary, we try to identify the correct number
of lags for this model. To accomplish that, we have regressed the stock variable
against nothing in particular and used the LM test. According to the test results,
lags beyond 15 have P-values around 0.05. We accept this as a signal that
GARCH lag should definitely be incorporated into the model. We have run
different specification of the GARCH model, and have concluded that GARCH
(1,1) is the best model for our data (please refer to the summary table below).

As a final step, we have also run a co-integration test between the stock
prices and the S&P500 series to examine whether an Error Correction Model
can be applied to this case. To accomplish that, we have regressed the stock
variable on the S&P500 variable, from which the residuals have then been
calculated. The residuals were tested by the Augmented Dickey Fuller test for
stationarity. With a P-value 0.63 for the ADF test, we conclude that co-
integration is not present.

The outcomes of the above-discussed model specifications are discussed in
the table 1.

Consistent with the objectives of our research, we have also conducted in-
sample simulations to assess how fit the models are for making predictions about
the future movements of the variable under discussion. This type of forecasts
utilize a subset of the available datato forecast values outside of the estimation
period and compare them to the corresponding known or actual outcomes. This
is done to assess the ability of the model to forecast known values. In our
analysis, we decided to use the data on the first 84 observations to try and
predict the values of the remaining 16 values. Afterwards, the predicted values
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are being compared with the actual numbers, based on which we obtain a
practical real-world instrument to assess how robust the model is.

Summary statistics of the model specifications

stock_1 ARMA(1,1) AR(3)  ARMAX  ARMAX  GARCH(,1)
ARMAX
Constant 0.0059 0.0019  0.0054 0.0045  0.678
AR 1 0.242 1.0594 02416  -0.2775
AR 2 0.7915
Ar 3 -0.3067
MA 1 -0.945 -0.9408  -0.9999
MA 2
sp500_1 0.0429
wii_1 0.2792
GARCH
Constant -— -— -— - 42.4643
ARCH 1 01928
GARCH 1 0.9463
N 98 98 98 98 98
Log likelihood ~ -247.245  -251.0541 -246.059 -225.39  -287.4316
7% of correct prediction 66.67% 66.67%  66.67% 66.67%  73.33%
(out of 16)

Based on the information of the developed models, and the conducted in-
sample predictions, we conclude that the “best” model for formulating the path
movement of the stock prices of Royal Dutch Shell is the GARCH(1,1) model.

The drastic increase in the volume of transactions in the
financial markets have prompted more and more analysts to examine the
suitability of using time series models in predicting the movements of the prices
of stocks and other financial derivatives. As stated, the technical analysis school
of thought posits that the historic data of stock price movements can be used to
predict their future behavioral patterns. Some analysts argue that technical
analysis can present trustworthy information when market forces (supply and
demand) are in the play and external factors do not drastically alter the market
environment. Examples of the latter can include unexpected events such as rapid
political developments, terrorist acts, changes in the legislation and financial
regulations as well as various incidents impacting individual companies (splits,
mergers, unexpected resignation of company CEO or other instrumental
figures).

In this paper, an attempt has been made to utilize some of the conventional
time series analysis methods, specifically those from the ARIMAX and ARCH-
GARCH families as well as the Error Correction Model, to predict the stock price
movements of the Royal Dutch Shell Company. The results indicate that in line
with the more sophisticated approaches of machine learning, time series models
can also be successfully used for this purpose.

More specifically, the in-sample predictions show that the ARMA (1,1), AR(3)
and ARMAX models were able to yield correct predictions for the 66,67% of the



values under consideration. It is also worth noting that the inclusion of additional
independent variables - the S&P500 stock index and the price of West Texas
Intermediate Futures, did not enhance the model’s predictive capacity
substantiating the argument that the past values of the dependent variable are
able to provide enough insights for forecasting purposes. The time plot of the
monthly price of the Royal Dutch Shell Company obviates a considerable level of
volatility and we thereby hypothesized that models from ARCH/GARCH family can
be quiet suitable for the purposes of our analysis. Our further analysis has
proven the hypothesis as the GARCH (1,1) model renders better results with an
increased level of correct predictions of 73,33%.

Building models with high level of predictive capacity can have a crucial
importance for both market dealers and the company managers in their effort of
making more precise calculations and developing a more informed and
reasonable line of actions. With the ever-increasing level of competition in the
global financial markets, having such informational framework can equip
companies with considerable competitive advantages in comparison with other
market players.
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uLvHuLhy UULLNrY3UL
<MS< dhowqquyht intnpbuwlywl hwpwpbpnuysiniiiinh
wdphnbp wuwhpwp

Updbpnpbph qubph wbpiwpbunidp dhowqquypt ph-
bwohuwlw ymyuwubpmd («tnyuwy hwps Thy» Jquqdwlbp-
wnipyui ophtiwlny).— dwdwuwwihu swppbph ypw hhdu-
qwé dnnbjubpp wpwdwnpnd Gu hGunwgnunnieniuubph hpw-
Ywuwgdwu hwpnwun gnpdhpwlwad, npu wlwnhynpbu oguinw-
gnpdynid £ ghuinpjwt wwppbp wuwwpbqubpnud, wjn Ynut’
Phuwtuwlwu Eynundtitnphluwynd L ytipindnipjwu dbio: Uwwn-
uwuobiny wbfuuhywywu Jbpndnipjwt wpryniuwybinnieni-
up' owwn Shuwuuphunubpn wydd hbugnd Gu dwdwuwlwhu
ownpbph Jpw' Ywuluwwbubine hwdwp wpdbenpbph W $ph-
Uwluwlwu w)| wdwugjw| gnpdhputinh qubiph swnpdpupwgp:
Unyu hGunwgnunieniup nhunwpynud £ wyu gnpdnid ARMA L
ARCH/GARCH dnnbjubpph Yphpwndwt twwwnwwhwpdwnni-
pjntup’ htuygbiny «Mtnjwp Ywps TShyp Yugqdwlbpwniyejwu wp-
dbenebtph qubph wduwywu swpdpupwgh ypw: L<Ewnwgnwuni-
pintund twl hpwlwuwgyt) Bu uhdnywghwubp' quwhwnb-
(nt hwdwp Yunnigwsd dnnbjubph wpryniuwybunnyeniup: Up-
ryntupubipp yYwynid Gu, np «Mnjw) twes Shpr Yugqdwybpwnt-
pIWwU  wwpwgwinud GARCH (1,1) dnnbjp pwywlwuwswih
unwhbih £ wpwdwnpbind 73,3%-nd G2gphin jwfuwnb-
unwdubip: Uyu indyuiutipp hpduwynpnud Gu wju thwuwmwpyp, np
dwdwuwywjptu swppbiph ypw Yunnigwsd dnnbjubpp Ywpnn
Gu dhowqquiht dpuwtuwlwu oniywubpnd gnpdnn gnpdw-
Ywubphu wpdbpwynp mbntyniegniu mpwdwnpb)' nwpdubing
upwug gnpéniubinyeniup wnwyb| hpduwynp b owhwybuwn:

Chduwpwnbp. $pbwbvwlwt Gwbpuwpbumdobp, ARIMA L
ARCH/GARCH dnnbjutp, ubpptpnpwipuyhl juitpuwpbunidulin
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AHJPAHUK MAHYKAH
Acnuparm kagheOpsi MexOyHapOOHbIX
IKOHOMUYECKUX omHouieHul Al 3Y

lpoaHo3bl yen axyuii Ha mexsOyHapoOHbIX hUHAHCOBbBIX
pbiHKax (Ha npumepe komnanuu Royal Dutch Shell).— Mogenn
BPEMEHHbIX PAJOB MNPEROCTaBNAOT bOoratblii MHCTpyMEHTapuii
OJIA MPOBeLEHNA UCCNEN0BaHUIA, KOTOPbI aKTMBHO UCMOJb3yeTCA
B PasfMyHbIX 00NnacTAX HayKu, BKAtOYaA PUHAHCOBYIO SKOHOMET-
PUKY 1 aHanu3. YKasbiBaAd Ha 3(O(EKTUBHOCTb MPOBEAEHNA TeX-
HWYECKOro aHanu3a, MHorve PUHaHCUCTbI ceiiyac onMparoTca Ha
BPEMEHHble pAfbl AA MPOrHO3MPOBaHWA LUHAMMKU CTOMMOCTU
LeHHbIX bymar 1 Apyrux NpousBOAHbIX (OUHAHCOBbLIX UHCTPYMEH-




ShuuLuLen G4 urdtraresrn cnhyu

ToB. B paHHOM uccnepoBaHuMM paccmatpuBaeTtca Lenecoobpas-
HOCTb NpumMeHeHua B 3ToM aene mogeneii ARMA n ARCH/GARCH
Ha OCHOBE EMEeMEeCAYHOW OMHAMUKM CTOMMOCTM LiEeHHbIX Oymar
opraHusaumun Royal Dutch Shell. B xope unccneposaHua Takme
6binn NpoBefeHbl CUMYNALMM  ONA  OLEeHKM 3PdEKTUBHOCTM
MOCTPOEHHbIX Mopeneil. PesynbTatbl CBUAETENbCTBYOT O TOM,
4To B cnyvae c opraHusaumeit Royal Dutch Shell mopens GARCH
(1,1) pocTtaTouHO HapemHa, NPeACcTaBAA NMPOrHO3bl C TOYHOCTHIO
73,33%. 211 paHHble 06OCHOBbIBAIOT apryMeHT O TOM, YTO MO-
Lenn BPEMEHHbIX PAJOB MOTYT MPefoCTaBATb LEHHY WMHGOpP-
MaLuto areHtam, paboTatoLLMM Ha MemAYHaPOAHbIX (OMHAHCOBbIX
pblHKax, Aenas ux AeAtenbHocTb Honee 060CHOBaHHOW U peHTa-
6enbHON.

Knioueebie cnoea: ¢hunarcossie npoeHosel, modenu ARIMA u
ARCH/GARCH, 8He-8bi60po4Hble NpozHO3bI.
JEL C53, G17
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